Вычисление площадей в декартовых координатах Вычисление площадей фигур при параметрическом задании границы Вычисление объема тела

Повторные интегралы

Пример Изменить порядок интегрирования в повторном интеграле .

Решение. Область интегрирования относится к типу I (рисунок 3). Она представляет собой треугольник, ограниченный прямыми или и или . Переменная x изменяется в интервале . Изменяя порядок интегрирования, исходный интеграл можно записать в виде суммы следующих двух повторных интегралов:
Рис.3

Опр: Необходимое условие экстремума.

В точке экстремума функции n-переменных дифференциал обращается в ноль.

Опр: дифференциала.  

 
 

 

 


Если локальный экстремум , если  - независимы

Замечание: если выполнено необходимое условие экстремума то она не обязательно является экстремумом.

Истина: Если точка – стационарная , то она не обязательно – экстремум , ВООБЩЕ ГОВОРЯ !

Экстремум же всегда является стационарной точкой !

Пример :  (0,0), x>0, y>0 ® z>0,  x<0, y<0® z<0, но dz =0.

Криволинейные интегралы