Вычисление площадей в декартовых координатах Вычисление площадей фигур при параметрическом задании границы Вычисление объема тела

Производные гиперболических функций

Пример Вычислить производную функции .

Решение. Производная постоянной величины равна нулю.

Пример Найти производную функции .

Решение. По правилу суммы Вынося постоянные множители за знак производной и вычисляя производные степенных функций, получаем

  Пример.

 Пример.

  Пример.

  Пример.

Рассечем рассматриваемое цилиндрическое тело произвольной плоскостью, параллельной плоскости Oyz, т.е. x=const,  (рис). В сечении мы получим криволинейную тра­пецию PMNR, площадь которой выражается интегралом от функции , рассматри­ваемой как функция одной пе­ременной у, причем у изменя­ется от ординаты точки P до ординаты точки R. Точка P есть точка входа прямой х =const (в плоскости Оху) в область D, а R - точка ее выхода из этой области. Из уравнений линий АВС и АЕС следует, что ординаты этих точек при взятом х соот­ветственно равны  и .

Следовательно, интеграл 

 

  дает выражение для площади плоского сечения PMNR. Ясно, что величина этого интеграла зависит от выбранного значения х; другими словами, площадь рассматриваемого поперечного сечения является некоторой функцией от х, мы обозначим ее через S(х):

Согласно формуле (**) объем всего тела будет равен интег­ралу от S(x) в интервале изменения .( При выводе формулы (**) мы считали, что S(*) есть геометриче­ская площадь поперечного сечения. Поэтому дальнейшие рассуждения справедливы, строго говоря, лишь для случая . Основываясь на уточненном геометрическом смысле двойного интеграла, нетрудно до­казать, на чем мы не будем останавливаться, что получающаяся формула для вычисления двойного интеграла будет верна для любых функций.

Приведем теперь основные свойства производной.

1. Если функция имеет производную в точке, то она непрерывна в этой точке.

2. Если существует f¢ (x) , и С ‑ произвольное число, то функция  имеет производную: (Cf(x))¢ = Cf¢ (x).

3. Если существуют f¢ (x) и g¢ (x), то функция S(x) = f(x) + g(x) имеет производную: S¢ (x) = f¢ (x) + g¢ (x).

4. Если существуют f¢ (x) и g¢ (x), то функция P(x) = f(x)g(x) имеет производную: P¢ (x) = f¢ (x)g(x) + f(x)g¢ (x).

5. Если существуют f¢ (x) и g¢ (x) и при этом g(x) ¹ 0, то функция D(x) = f(x) / g(x) имеет производную: D¢ (x) = (f¢ (x) g(x)  f(x) g¢ (x)) / g2(x).

В любом курсе математического анализа доказывается теорема о производной сложной функции. Мы ограничимся лишь ее формулировкой.

Пусть функция g(x) имеет производную в точке x, а функция f(z) имеет производную в точке z = g(x). Тогда сложная функция F(x) = f(g(x)) имеет в точке x производную F¢ (x) = f¢ (z) g¢ (x).

Приведем примеры вычисления производной сложной функции.

 


Найти повторный интеграл