Вычисление площадей в декартовых координатах Вычисление площадей фигур при параметрическом задании границы Вычисление объема тела

Производные тригонометрических функций

Пример Продифференцировать функцию .

Решение. Используем формулы для производной суммы функций и производной степенной функции. После подстановки производных и упрощения получаем: Поскольку , то окончательное выражение для производной имеет вид

Пример Вычислить производную функции .

Решение. Первый шаг очевиден: Так как то применяя правило производной для сложной функции, находим: Воспользовавшись для упрощения тригонометрическими формулами и , получаем ответ

Рассмотрим этот вопрос в общем виде. Пусть - любая функция двух переменных (не обязательно положительная), не­прерывная в некоторой области D, ограниченной замкнутой линией. Разобьем область D на частичные, как указано выше, выберем в каждой частичной области по произвольной точке  и составим сумму

  (*)

где  - значение функции в точке ; и , - площадь ча­стичной области.

Сумма (*) называется n-й интегральной суммой для функции в области D, соответствующей данному разбиению этой области на n частичных областей.

Определение. Двойным интегралом от функции  по области D называется предел, к которому стремится n-я интегральная сумма (*) при стремлении к нулю наибольшего диаметра частичных областей.

­Записывается это так:

Читается: «двойной интеграл от  на  по области D». Выражение , показывающее вид суммируемых слагаемых, называется подынтегральным выражением; функция назы­вается подынтегральной функцией,  - элементом площади, об­ласть D - областью интегрирования, наконец, переменные x и у на­зываются переменными интегрирования.

Для того, чтобы вычислить определенный интеграл от функции f(x) по промежутку [a;b], нужно найти какую-либо первообразную F(x) функции f(x) и подсчитать разность значений первообразной в точках b и a. Разность этих значений первообразной принято обозначать символом .

Приведем примеры вычисления определенных интегралов с помощью формулы Ньютона-Лейбница.

Примеры. 1. .

2. .

Сначала вычислим неопределенный интеграл от функции f(x) = xex. Используя метод интегрирования по частям, получаем: . В качестве первообразной функции f(x)  выберем функцию ex(x – 1) и применим формулу Ньютона-Лейбница:

I = ex(x – 1) = 1.

При вычислении определенных интегралов можно применять формулу замены переменной в определенном интеграле:

 .

Здесь a и b определяются, соответственно, из уравнений j(a) = a; j(b) = b, а функции f, j, j¢ должны быть непрерывны на соответствующих промежутках.


Найти повторный интеграл