Вычисление площадей в декартовых координатах Вычисление площадей фигур при параметрическом задании границы Вычисление объема тела

Производная произведения функций

Вроде бы по аналогии напрашивается формула …., но неожиданность состоит в том, что:

Пример

Найти производную функции

Здесь у нас произведение двух функций, зависящих от .
Сначала применяем наше странное правило, а затем превращаем функции по таблице производных:

Пример

Найти производную функции

В данной функции содержится сумма  и произведение двух функций –  квадратного трехчлена   и логарифма . Со школы мы помним, что умножение и деление имеют приоритет перед сложением и вычитанием.

Здесь всё так же. СНАЧАЛА мы используем правило дифференцирования произведения:

Теперь для скобки  используем два первых правила:

В результате применения правил дифференцирования под штрихами у нас остались только элементарные функции, по таблице производных превращаем их в другие функции:


При определенном опыте нахождения производных, простые производные вроде  не обязательно расписывать так подробно. Вообще, они обычно решаются устно, и сразу записывается, что .

В заключение покажем метод вычисления неопределенного интеграла, стоящего в приведенной выше таблице под номером 12:

.

Представим дробь  в виде суммы двух дробей:  и , и попытаемся найти неизвестные величины параметров A и B. Из равенства  получим систему уравнений

 

с решением . Отсюда следует:

.

Полученный интеграл в обиходе обычно называют “высоким логарифмом”. Метод, которым он был найден, называется методом “неопределенных коэффициентов”. Этот метод применяется при вычислении интегралов от дробей с числителем и знаменателем в виде многочленов.


Найти повторный интеграл